Virus resistant transgenic silkworm, the status of its regulatory field trials, and progress towards regulatory approval

V. V. Satyavathi

Centre for DNA Fingerprinting and Diagnostics (CDFD) Hyderabad, India vsatya@cdfd.org.in

Collaborating Institutes

Andhra Pradesh State Sericulture Research and Development Institute (APSSRDI) Hindupur, India

Central Silk Board (CSB) Ministry of Textiles Bangalore, India

Sericulture statistics in India

Silkworm

Economics

- □ 6 million rural people are in sericulture spread over 60,000 villages
- □ 2nd largest producer of silk in the world
- □ Silk production is ~18,000 tonnes

Pathogens affecting sericulture

Staphylococcus

Densonucleosis

Nuclear polyhedrosis

Cytoplasmic polyhedrosis (BmCPV) Infectious flacherie (BmIFV) Densonucleosis (BmDNV)Bacterial diseasesBacterial disease of digestive organ (Streptococci sp., Staphylococci sp.) Septicemia (Serratia sp.) Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)	Viral diseases	Nuclear polyhedrosis (BmNPV)
Infectious flacherie (BmIFV) Densonucleosis (BmDNV)Bacterial diseasesBacterial disease of digestive organ (Streptococci sp., Staphylococci sp.) Septicemia (Serratia sp.) Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Cytoplasmic polyhedrosis (BmCPV)
Densonucleosis (BmDNV)Bacterial diseasesBacterial disease of digestive organ (Streptococci sp., Staphylococci sp.) Septicemia (Serratia sp.) Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Infectious flacherie (BmIFV)
Bacterial diseasesBacterial disease of digestive organ (Streptococci sp., Staphylococci sp.)Bacterial diseasesSepticemia (Serratia sp.)Sotto (Bacillus thuringiensis sp.)Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Densonucleosis (BmDNV)
Septicemia (Serratia sp.) Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)	Bacterial diseases	Bacterial disease of digestive organ (Streptococci sp., Staphylococci sp.)
Sotto (Bacillus thuringiensis sp.)Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Septicemia (Serratia sp.)
Fungal diseasesMuscardine (Beauveria bassiana, Spicaria sp.) Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Sotto (Bacillus thuringiensis sp.)
Aspergillosis (Aspergillus sp.)Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)	Fungal diseases	Muscardine (Beauveria bassiana, Spicaria sp.)
Microsporidian diseasesPebrine (Nosema bombycis and other microsporiadian sp.)		Aspergillosis (Aspergillus sp.)
	Microsporidian diseases	Pebrine (<i>Nosema bombycis</i> and other microsporiadian sp.)

Nucleopolyhedrosis virus causes major crop loss

B. mori larvae (Control)

Occlusion Bodies of BmNPV

BmNPV infected larvae

Life cycle of the domesticated silkworm Bombyx mori

Limitations to conventional breeding methods

□ As of now there are no effective methods to control the disease

□ Traditional methods have many short comings due to polygenic nature of resistance

Biotechnological tools are only option to meet the growing demand for quality silk

□ Transgenic methods based on RNAi were reported to block the viral infection in many cases

Genesis of RNAi-based Nuclear Polyhedrosis Virus (NPV) resistant transgenic silkmoths

□ In 2006, Dr. Nagaraju's group at CDFD developed transgenic silkworms expressing dsRNA for a single essential viral gene (ie-1)

□ Later, it was speculated that by expressing dsRNA for multiple essential viral genes in the silkworm would elicit a more stable defense against the virus

Dr. J. Nagaraju Prof Pierre Couble (Indo France collaborative project)

Genome organization of BmNPV

Green – potential origins of replication and/or enhancers for late gene replication Blue – *Lefs* involved in late gene replication Orange – required for high levels of protein expression. Ex. Polyhedrin and P10

Viral replication

ie1 : is a transregulator, activates number of late effector factors

lef1: is a DNA primase of the replication complex

lef3 : has ssDNA binding capability

Virus transmission

p74 : structural protein, required for infection (viral infectivity)

lkeda et al. 2006

PiggyBac based RNAi vectors with multiple viral target genes

PiggyBac based germline transgenesis was used for the production silkworm lines expressing dsRNA for multiple essential viral genes

Genetics 2013

BmNPV resistance in transgenic Nistari lines of the silkworm

Copy numbers and site of insertion of transgenes in transgenic lines were characterized using Transposable Element Display assay

□ Nistari transgenic lines (170A, 170B, 164C, 164B, 154C, 154D and 118A) showing single copy insertions

Chromosomal location of the transgene

Transfer of BmNPV resistance from transgenic Nistari to commercial CSR2 line

Transgenic silkworm hybrids

Nistari and CSR2 transgenic lines were crossed to various ruling breeds to develop baculovirus resistant transgenic silkworm hybrids for field trials

Polyvoltine x Bivoltine

Pure Mysore x Transgenic CSR2 (727)

Transgenic Nistari (164C) x (SK6 x SK7)

Bivoltine x Bivoltine

Transgenic CSR2 (727) x CSR4

Characteristics of transgenic silkworm hybrids upon BmNPV infection

Cocoon and silk characteristics of the transgenic hybrids

Characterization of transgenic silkworm hybrids upon BmNPV infection

Viral load in the transgenic hybrids

Quantitative PCR analysis of BmNPV using lef3

Regulatory committees in India

Recommendations of RCGM

□ In its 132nd meeting held on 25.03.2014, RCGM permitted CDFD to conduct multilocational trials in contained facilities on GE *Bm*NPV resistant *B. mori* at 4 locations in 2 phases,

□ Phase I at Institutional level, and

□ Phase II at farmer's level

Standard Operating Procedures (SOPs) for GE silkworms

□ All SOPs, guidelines, and parameters to be considered during multi-location contained trials have been formulated

□ Standard Operating Procedures (SOPs)

Compliance recording formats

- □ Record of transport & transport inventory list
- □ Record of storage of eggs
- □ Record of storage inspection & inventory
- □ Record of brushing of eggs
- Record of rearing
- Record of harvest/termination
- Record of post rearing activities
- Record of corrective action, if any

Data recording formats

- □ Brushing record
- Log sheet
- Index card
- Rearing performance
- Reeling performance
- Quality performance of raw silk reeled

Multilocational contained trial locations

Central Compliance Committee

- For monitoring field trials, a Central Compliance Committee was formed by Biosafety Support Unit of DBT
- □ The composition of CCC is as follows:

Dr. S.R. Rao, DBT, New Delhi
Dr. V. Siva Reddy, BSU, New Delhi
Dr. Gururaj Katti, IIRC, Hyderabad

Performance of Nistari transgenic hybrids upon BmNPV challenge (Polyvoltine x Bivoltine)

Control - grey; Transgenic - coloured

Performance of CSR2 transgenic hybrids upon BmNPV challenge (Bivoltine x Bivoltine)

Control - grey; Transgenic - coloured

No environmental and biosafety issues

Silkworms are always reared under contained conditions - can't survive outdoor

- Silkmoth can't fly out and it is a non-feeding stage
- □ Large scale rearing is done using only F1 hybrids. The F1 hybrids are not reproduced further
- GE silkworms can be identified with eye marker which enables easy monitoring.
- □ There is no functional gene incorporated in the present case

ACKNOWLEDGEMENTS

DNA Fingerprinting and Diagnostics

Director, CDFD Dr. C.V.E. Rajendra Ms. B. SandhyaRani

Andhra Pradesh State Sericulture Research & Development Institute

Dr. P.J. Raju, Director Dr. I. Basha Mr. Ravi Mr. Subba Rao Ms. Nageena

Central Compliance Committee

Dr. S.R. Rao, DBT, New Delhi Dr. V. Siva Reddy, BSU, New Delhi Dr. Gururaj Katti, IIRC, Hyderabad

Central Silk Board & its Centres

Dr. K.Vijayan, Director (Technical) Dr. V. Sivaprasad, Director, CSR&TI, Mysore Dr. M. Moorthy Dr. K.Trivedy, Director, CSR&TI, Berhampore Dr. M.K. Ghosh, Director, CSR&TI, Pampore

Biosafety Support Unit

Biotech Consortium India Limited

Funding agency

Department of Biotechnology, Govt of India

□ Centre of Excellence for Genetics and Genomics of Silkmoths (CoE-I)

Biotechnology Industry Research Assistance Council - Contract Research Scheme (BIRAC CRS)

THANK YOU